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Synchronization of chaos using proportional feedback
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We have demonstrated experimentally a proportional-feedback algorithm for the synchronization
of chaotic time signals generated from a pair of independent diode resonator circuits. Synchro-
nization was easily obtained and occurred for relative feedback levels between 3% and 8% of the
driving voltage. Once established, the synchronization persisted throughout the whole range of the
resonator bifurcation diagram without varying the gain of the feedback.

PACS number(s): 05.45.+b, 84.30.Wp

I. INTRODUCTION

Upon first consideration, the likelihood of synchroniz-
ing chaotic signals appears a dismal prospect at best.
Chaos is characterized by a dynamical system’s sensi-
tive dependence on initial conditions. Small initial de-
viations between two chaotic signals lead to exponential
divergences of the trajectories in a time on the order of
the inverse Lyapunov exponent characterizing the orbit.
With the inclusion of either internally or externally gen-
erated noise, the prospect of synchronizing two chaotic
signals seems to pale even further. Despite this naive pes-
simism, it has been shown that chaotic synchronization
of signals can be realized [1]. Demonstrations have been
performed in numerical simulations of evanescently cou-
pled semiconductor laser arrays [2] and experimentally in
chaotic circuits [1,3,4]. Recently, methods based on the
Ott-Grebogi-Yorke (OGY) scheme for controlling unsta-
ble periodic orbits [5] have been adapted [6] and extended
[7] to handle the stabilization of a chaotic trajectory of
one system about a chaotic trajectory of another system.

In practice, the methods to date for synchronizing two
chaotic signals have relied extensively on some knowl-
edge of the system. In the earlier work of Carroll and
Pecora [1,3] this meant knowledge of the governing dy-
namical equations so that the system could be divided
into subsystems characterized by Lyapunov exponents of
the same sign. The subsystem containing the largest
positive Lyapunov exponent can be used to drive the
other subsystem (containing only negative Lyapunov ex-
ponents) into synchronization with a duplicate subsys-
tem. The work of Mehta and Henderson [6] relied on
knowledge of the system’s equations in order to construct
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an artificial dynamical system in which errors between
the system’s output and the desired aperiodic orbit could
be evolved. By using OGY based parameter perturba-
tions when the artificial system was near a fixed point,
synchronization of the original system to a target chaotic
trajectory could be achieved. Lai and Grebogi [7] used a
more direct OGY extension in which the parameter per-
turbations were applied directly to the original dynamical
system. Although their OGY based method intrinsically
precludes a priori knowledge of the dynamical equations
for the system, they still required local knowledge of the
Poincaré map in order to calculate the necessary param-
eter perturbation. While this can in principle be per-
formed numerically for a straightforward application of
the OGY method to controlling an unstable periodic or-
bit, it is more problematic to implement experimentally
in the case of synchronizing to an arbitrary chaotic tra-
jectory.

In this paper we present an alternative approach for
synchronization of chaotic time signals which is also easy
to implement experimentally. In the spirit of the occa-
sional proportional-feedback method developed by Hunt
and implemented by him in a diode resonator [8] and with
Roy et al. [9] in a multimode solid-state laser system, we
propose a synchronization scheme based on feeding back
a proportional amount of the difference between the two
chaotic signals to the voltage V, sin(27 ft), which drives
one of the circuits. We demonstrate this scheme exper-
imentally in a driven diode resonator of the type well
studied in the literature [10]. The outline of this paper
is as follows: in Sec. II we discuss the theoretical basis
for this method, in Sec. III we present the experimental
setup and discuss the experimental results. In Sec. IV
we summarize our main results and conclude.

II. SYNCHRONIZATION OF CHAOTIC
TRAJECTORIES

Before discussing the use of proportional feedback ap-
plied to synchronizing chaotic orbits, let us first recall its
normal use in the context of controlling unstable periodic
orbits. In the now standard OGY method for controlling
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an unstable periodic orbit of a chaotic dynamical system,
the system parameter perturbations necessary to achieve
control is given by [5]

Au fu. . [mn - zF(PO)]
fu-0xFp/0p

Here f, is the contravariant eigenvector, with eigen-
value A,, of the unstable direction of the Jacobian
J = D F(®,p)|e=zp p=p, Of a Poincaré surface of sec-
tion @,41 = F(®,,po), where po is the nominal value
of some control parameter p. The quantity dzr/dp =
D,F(2,p)|s=z, p=p, is the change in the fixed point with
respect to the control parameter evaluated at the fixed
point & of the map.

The essence of the occasional proportional-feedback
scheme [8,9] for controlling unstable periodic orbits with
one local positive Lyapunov exponent is to replace the
structural prefactors of Eq. (2.1) with an empirically cho-
sen constant a. This constant then multiplies the differ-
ence of the signal V' from some reference value Vier. The
control algorithm is then simplified to a form which is
much easier to implement experimentally,

Jpn = (Vn - I/l'ef)-

(2.1)

(2.2)

At least for unstable orbits with one local positive Lya-
punov exponent, this scheme is reasonable since it is es-
sentially Eq. (2.1). The reference signal Vs selects out
the fixed points of the system and the remaining struc-
tural factors which have been lumped into the constant «
can be found experimentally by turning the a knob until
control has been achieved. Equation (2.2) is not precisely
the OGY formula since the former has been used in prac-
tice to control other than unstable period-1 orbits [11]. In
addition, the OGY formula implicitly assumes that the
parameter perturbation is applied for the entire dura-
tion between successive crossings of the Poincaré surface
of section. In practice, Eq. (2.2) is typically applied for
only a fraction of a characteristic period of the system.
This period is essentially the mean value between succes-
sive crossings of the Poincaré surface of section. There is
precedence for this type of control via proportional feed-
back called adaptive control [12]. It was implemented as
a restabilizing algorithm for systems in which sudden pa-
rameter changes created chaotic oscillations and not as a
method to control unstable periodic orbits.

A straightforward modification of Eq. (2.2) for syn-
chronizing two chaotic signals would be

6pn = a (VM —V5). (2.3)
Here VS is some chaotic slave signal which we wish to
synchronize to some other chaotic master signal VM.
Equation (2.3) could be understood as utilizing a feed-
back signal derived from the difference between the
proportional-feedback signals for the master and the
slave, i.e., 6p, = @ (VM — Vies) — a (V,5 — Vieg).

Such a scheme was recently proposed by Lai and Gre-
bogi 7] in which the proportionality factor a is in fact
iterative dependent. In their paper the authors proposed
the synchronization of a slave signal y,, to a master signal
&, via the proportional difference

5py = [DyF(y,p) - {yn — ®n(P0)} - Fuin+1)
" —DPF(ZI»P) : .fu(n+1) y=2,p=po

(2.4)

where in the above, only the derivative terms are eval-
uated at y = @,p = po. This formula is derived by
expanding the chaotic slave orbit y, locally about the
chaotic master orbit «, and requiring that the next it-
eration of y,, after falling into a small neighborhood
around x,, lie on the stable direction of @, 41(po), i.e.,
[Yn+1—®n+1(P0)] - Fu(n+1) = 0. Hence this perturbation
formula is proportional to the instantaneous difference
between the master and slave signals.

Experimental implementation of this algorithm is non-
trivial, especially in real time. For chaotic orbits, one
needs to calculate the unstable contravariant eigenvec-
tor one step forward in time, i.e., fy(n41). This requires
some knowledge of the mapping so that a small circle
of points can be propagated forward in time in order to
estimate this unstable direction (see [7,13] for details).
In addition, the Jacobian of the map and the derivative
of the map with respect to the parameter are iterate de-
pendent since they depend on the current value @, of
the master orbit. This structural knowledge of the sys-
tem would be needed at each instant along the chaotic
trajectory in order to maintain synchronization.

Lai and Grebogi demonstrated numerically that the
synchronization was tolerant to a small degree of exter-
nally generated noise. This is reminiscent of the robust-
ness of the standard OGY algorithm Eq. (2.1) to noise. In
their original paper, OGY defined a region about the un-
stable fixed point about which control could be achieved.
If the magnitude of the noise exceeded the radius of this
region, control was lost. A similar, although less well de-
fined, region exists for Eq. (2.4) as well, outside which
synchronization will be lost.

An OGY-based scheme requires a system control pa-
rameter that one can access and perturb. In our exper-
iment, we did not modulate the amplitude Vj, of the
wave-form generator, which is the critical system param-
eter capable of driving the circuits into chaos. The key
ingredient in our synchronization scheme is that the feed-
back signal is proportional to the difference between the
master and slave signals. As synchronization is achieved,
such a term will tend towards zero. In our experiment
we continously added a proportional amount of the in-
stantaneous master-slave signal difference to the voltage
Vosin(2x ft), which drove the slave circuit, as long as
this difference was smaller than some specified amount.
The proportionality factor « was taken to be a constant.
In contrast to OGY-based methods, it is not known a
priori that such small perturbations will drive the cir-
cuits into synchronization. We empirically determined
the range of driving voltages V, over which this scheme
could maintain synchronization. The advantage of this
method, however, is that is is easily implemented, it does
not require us to actively modulate the driving voltage
Vo, and synchronization can be achieved with very small
relative feedback levels.

In Sec. IIT we discuss the implementation of this syn-
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chronizing proportional feedback algorithm to a diode
resonator circuit and find that it works remarkably well.
In a forthcoming paper [14] we analyze a dynamical
model for our system and show how the synchronization
of the two chaotic systems can be achieved by general-
izations of these ideas involving the addition of different
types of perturbations to the slave system.

III. EXPERIMENT AND RESULTS
A. Setup

The basic idea behind the synchronization experiment
is depicted in Fig. 1. From the chaotic attractor of a
diode resonator circuit we select out an arbitrary chaotic
signal which we designate as the master signal VM (t).
From another identical diode resonator circuit operat-
ing under the same conditions we wish to select another
chaotic signal, designated as the slave V5(t), and syn-
chronize it to VM (t). We accomplish this by measuring
the difference between the two signals and feeding back
a time varying, proportional amount o [VM(t) — V5(¢)]
to the voltage which drives the slave resonator. The
quantity « is to be determined experimentally by ad-
justing the gain of an amplifier which acts on the differ-
ence voltage until the two chaotic signals lock together.
In the experimental implementation of the synchronizing
proportional-feedback scheme we used the real time sig-
nal difference between the master and slave as opposed
to their difference measured on some surface of section,
as implied by Eq. (2.3).

A block diagram of the experimental setup is shown in
Fig. 2. Each diode resonator consists of a 1N4004 diode,
a 33-mH inductor, and a 90- resister in series. Both cir-
cuits were driven by the same Wave Tek 166 wave-form
generator. The master signal VM and the slave signal
VS were defined as the voltage drop across the respec-
tive resistors. Signals were recorded with a Tektronix
RTD710A digitizer. Under conditions of no applied feed-
back, both master and slave signal were approximately
40 mV rms. The master resonator was driven solely by
the wave-form generator with a sine wave of frequency

 Master

VnMasler

FIG. 1. A schematic illustration of the strategy for syn-
chronizing two almost identical chaotic circuits. The output
of the master and the slave circuit is fed into a comparator
and the resulting difference is amplified and fed back into the
slave circuit in order to induce synchronization.
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FIG. 2. A block diagram of the experimental apparatus.
The setup consists of two identical diode resonators each com-
posed of a 1N4004 diode, 33-mH inductor, and a 90-f2 resistor.
Both circuits are driven by the same Wave Tek 166 function
generator at 80.5 kHz to ensure that their basic characteristics
are the same as much as possible. The chaotic current of each
circuit is converted into a voltage and fed into a difference am-
plifier which is then passed onto a window comparator. If the
amplified difference between the two chaotic signals is within
an adjustable window of the comparator, an analog switch
is closed and the feedback is then added to the slave driving
voltage.

80.5 kHz and amplitude Vp of 2.92 V rms. This drove
the master resonator into the chaotic regime just below
the period-3 window which occurred at a driving volt-
age of 3.0 V rms (see arrow in Fig. 3). In Fig. 4 we
have plotted the first-return map for the master signal.
This graph was obtained from a long time series record-
ing of the master signal by plotting the (m + 1)st peak
against the mth peak. The thinness of the attractor in-
dicates that it is nearly one dimensional. However, the
extra branch in the attractor and the jump in the size of
the attractor at the transition to period three are mani-
festations of a two dimensional character of the system.
Similar observations have appeared in the literature for
the diode resonator [15,16].

In addition to being driven at Vjsin(27ft), the volt-
age applied to the slave resonator was modified by the
addition of a time varying feedback signal 6Vy(t) =
a[VM(t) — V5(t)]. This feedback signal was obtained by
amplifying the voltage difference between the master and
slave oscillators and passing this through a window com-
parator centered on 0 V. If §V¢(t) was inside the range
of the adjustable window comparator, an analog switch
was closed and 6V (t) was added to the slave driving volt-
age through a summing amplifier. If 6V¢(t) fell outside
the range of the window comparator, the analog switch
remained open and no feedback signal was applied.
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FIG. 3. An oscilloscope trace of the bifurcation diagram for
a single diode resonator displaying the period doubling route
to chaos. The abscissa is the amplitude of the driving sine
wave Vo while the ordinate is the voltage converied current
across the diode (arbitrary units). The arrow indicates the
master circuit driving voltage of 2.92 V rms for which the
majority of experiments was performed.

B. Observations

Under conditions of zero feedback, the driving voltage
for the master and slave circuits were on average identi-
cal. Slight variations in the slave driving voltage did exist
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FIG. 4. The first return map for the master circuit driven
at 2.92 V rms. This graph was constructed from a long time
series recording of the master signal by plotting consecutive
pairs of peak values.

due the unavoidable noise involved in passing it through
the summing amplifier. In Fig. 5(a) we show an oscillo-
scope trace of VM (t) versus V5(t). The resulting wide
parallelogram region of phase space demonstrates that
each signal was executing a different chaotic trajectory.
The 45° slope of the figure is due to the chaotic peaks
being approximately in phase as each signal followed the
driving voltage. In Fig. 6(a) we plot the raw (unampli-
fied) signal difference VM(t) — V5(t).

In order to achieve synchronization, feedback had to be
applied for a minimum duration of 1 us. When the slave
signal synchronized to the master, the slave driving volt-
age dropped to 2.83 V rms. This implied a feedback of
approximately 3.5% relative to the master driving volt-
age of 2.92 V rms. The oscilloscope trace of VM (t) versus
V3(t) in Fig. 5(b) clearly demonstrates that synchroniza-
tion has been achieved. Below this feedback level we were
unable to force the signals to synchronize. During syn-
chronization the absolute value of the signal difference
|[VM(t) — V5(t)| fluctuated in time, never exceeding 2.5
mV, as shown in Fig. 6(b). We used a gain a of ap-
proximately 40 so that the value of the feedback signal
0V§(t) never exceeded £100 mV. Once the signals were
locked together, the comparator window became super-
fluous since the amplified signal difference was always

v

3

FIG. 5. (a) Oscilloscope trace phase portrait V(t) versus
V5(t) of the chaotic circuits when no feedback is applied; (b)
the phase portrait when the feedback is applied. The thinness
of the trace indicates almost perfect synchronization.
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FIG. 6. The master-slave signal difference V¥ (t) — V5(t),
(50-MHz sampling rate): (a) no feedback applied, (b) feed-
back applied. The maximum signal difference is reduced by
over a factor of 10 when the signals are synchronized.

within the window comparator, implying that the analog
switch then remained continuously closed. The purpose
of the comparator window was to ensure that we were not
feeding back arbitrarily large perturbations to the slave
driving voltage. However, the use of a window compara-
tor was not essential for achieving synchronization. We
found that the signals would still synchronize in an ex-
perimental arrangement in which the window comparator
and the analog switch were removed and the amplified
signal difference was fed directly into the slave driving
voltage. Again the relative feedback level was approxi-
mately 3.5%. We also found that, regardless of the use of
a window, the signals could not be locked together if the
feedback exceeded 250 mV, corresponding to a relative
feedback level of 8.5%.

We observed that once synchronization had been
achieved for a given relative feedback level, the driving
voltage Vp could be varied across the full range of the res-
onator bifurcation diagram (Fig. 3), without varying the
gain, and the synchronization would continue to persist.
Thus synchronization could be maintained as the signals
were changed freely between chaotic and periodic orbits.

As mentioned above, once synchronization was

achieved the amplified signal difference always remained
within the window comparator. This implied that the
analog switch remained closed so that feedback was ap-
plied continuously. In another experiment, we chopped
the feedback signal in time once synchronization was
achieved so that the feedback was turned off periodically.
The largest interruption interval in which the feedback
signal could be turned off and synchronization was still
maintained was 10 us.

Finally, great care was taken to ensure that the two
diode resonators were constructed as identically as pos-
sible and operated under similar driving voltages. It is
noteworthy to point out that synchronization could still
be achieved when the resonator circuits differed slightly
from each other due to differences in the various circuit
components. In addition synchronization could also be
achieved when there existed noticeable differences be-
tween the master and slave driving voltages. In these
cases the synchronization was somewhat degraded in the
sense that the wave form of the slave signal showed no-
ticeable differences from that of the master signal. A
comparison of VM (t) versus V5(t) similar to Fig. 5(b)
revealed a straight line which grew thicker towards the
higher voltage end. For slightly dissimilar resonator cir-
cuits or nearly identical operating conditions, the chaotic
trajectory content of the attractors is different for the two
circuits. However, the synchronization employed here al-
lows for successful synchronization of similar chaotic or-
bits.

IV. CONCLUSIONS

We have demonstrated experimentally that two chaotic
signals generated by separate but identical diode res-
onators could be synchronized by a simple proportional-
feedback algorithm. To achieve synchronization, the
feedback had to be applied for a minimum duration of
1 ps. The synchronization was maintained by applying
relative feedback levels between 3.5% and 8.5%. Once
synchronization was established, it could be maintained
as the driving voltage was altered while the feedback
gain was held constant. We found this synchronizing
proportional-feedback scheme more robust and easier to
implement than other traditional synchronization meth-
ods. The combination of this synchronization scheme
with current chaotic controlling algorithms could poten-
tially find use in many applications including communi-
cations and chaotic lasers.
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FIG. 1. A schematic illustration of the strategy for syn-
chronizing two almost identical chaotic circuits. The output
of the master and the slave circuit is fed into a comparator
and the resulting difference is amplified and fed back into the
slave circuit in order to induce synchronization.



FIG. 3. An oscilloscope trace of the bifurcation diagram for
a single diode resonator displaying the period doubling route
to chaos. The abscissa is the amplitude of the driving sine
wave Vo while the ordinate is the voltage converted current
across the diode (arbitrary units). The arrow indicates the
master circuit driving voltage of 2.92 V rms for which the
majority of experiments was performed.
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FIG. 5. (a) Oscilloscope trace phase portrait V™ (t) versus
V3 (t) of the chaotic circuits when no feedback is applied; (b)
the phase portrait when the feedback is applied. The thinness
of the trace indicates almost perfect synchronization.



